Deterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Design and System Identification
نویسنده
چکیده
In this paper we present a new family of discrete sequences having “random like” uniformly decaying auto-correlation properties. The new class of infinite length sequences are higher order chirps constructed using irrational numbers. Exploiting results from the theory of continued fractions and diophantine approximations, we show that the class of sequences so formed has the property that the worst-case auto-correlation coefficients for every finite length sequence decays at a polynomial rate. These sequences display doppler immunity as well. We also show that Toeplitz matrices formed from such sequences satisfy restricted-isometry-property (RIP), a concept that has played a central role recently in Compressed Sensing applications. Compressed sensing has conventionally dealt with sensing matrices with arbitrary components. Nevertheless, such arbitrary sensing matrices are not appropriate for linear system identification and one must employ Toeplitz structured sensing matrices. Linear system identification plays a central role in a wide variety of applications such as channel estimation for multipath wireless systems as well This research was supported by ONR Young Investigator Award N00014-02-100362 and a Presidential Early Career Award (PECASE), NSF CAREER award ECS 0449194, and NSF Grant CCF 0430983 and CNS-0435353
منابع مشابه
Deterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Designs and System Identification
In this paper we present a new family of discrete sequences having “random like” uniformly decaying auto-correlation properties. The new class of infinite length sequences are higher order chirps constructed using irrational numbers. Exploiting results from the theory of continued fractions and diophantine approximations, we show that the class of sequences so formed has the property that the w...
متن کاملCompressed sensing and designs: theory and simulations
In An asymptotic result on compressed sensing matrices [4], a new construction for compressed sensing matrices using combinatorial design theory was introduced. In this paper, we analyse the performance of these matrices using deterministic and probabilistic methods. We provide a new recovery algorithm and detailed simulations. These simulations suggest that the construction is competitive with...
متن کاملAn asymptotic existence result on compressed sensing matrices
For any rational number h and all sufficiently large n we give a deterministic construction for an n× bhnc compressed sensing matrix with (`1, t)-recoverability where t = O( √ n). Our method uses pairwise balanced designs and complex Hadamard matrices in the construction of -equiangular frames, which we introduce as a generalisation of equiangular tight frames. The method is general and produce...
متن کاملDeterministic Compressed Sensing Matrices from Additive Character Sequences
Compressed sensing is a novel technique where one can recover sparse signals from the undersampled measurements. In this correspondence, a K×N measurement matrix for compressed sensing is deterministically constructed via additive character sequences. The Weil bound is then used to show that the matrix has asymptotically optimal coherence for N = K, and to present a sufficient condition on the ...
متن کاملDeterministic construction of Fourier-based compressed sensing matrices using an almost difference set
In this paper, a new class of Fourier-based matrices is studied for deterministic compressed sensing. Initially, a basic partial Fourier matrix is introduced by choosing the rows deterministically from the inverse discrete Fourier transform (DFT) matrix. By row/column rearrangement, the matrix is represented as a concatenation of DFT-based submatrices. Then, a full or a part of columns of the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008